您的位置首页百科问答

四年级数学题100个和尚吃100个馒头.大和尚一人吃3个.求大小和尚各多少人.

四年级数学题100个和尚吃100个馒头.大和尚一人吃3个.求大小和尚各多少人.

的有关信息介绍如下:

四年级数学题100个和尚吃100个馒头.大和尚一人吃3个.求大小和尚各多少人.

100个大小和尚吃100个馒头的解题方法

100个和尚吃100个馒头,大和尚一人吃3个,小和尚3人吃一个,大小和尚各多少人

网站:pan.m8t.cn

明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:

一百馒头一百僧,

大僧三个更无争,

小僧三人分一个,

大小和尚各几丁?"

如果译成白话文,其意思是:有100个和尚分100只馒头,正好分完.如果大和尚一人分3只,小和尚3人分一只,试问大、小和尚各有几人?

方法一,用方程

设大和尚有x人,则小和尚有(100-x)人,根据题意列得方程:

3x+1/3(100-x)=100

解方程得:x=25

小和尚:100-25=75人

方法二,鸡兔同笼法:

(1)假设100人全是大和尚,应吃馒头多少个?

3×100=300(个).

(2)这样多吃了几个呢?

300-100=200(个).

(3)为什么多吃了200个呢?这是因为把小和尚当成大和尚.那么把小和尚当成大和尚时,每个小和尚多算了几个馒头?

3-1/3=8/3

(4)每个小和尚多算了8/3个馒头,一共多算了200个,所以小和尚有:

200÷8/3=75(人)

大和尚:100-75=25(人)

方法三,分组法:

由于大和尚一人分3只馒头,小和尚3人分一只馒头.我们可以把3个小和尚与1个大和尚编为一组,这样每组4个和尚刚好分4个馒头,那么100个和尚总共分为100÷(3+1)=25组,因为每组有1个大和尚,所以有25个大和尚;又因为每组有3个小和尚,所以有25×3=75个小和尚.

这是《直指算法统宗》里的解法,原话是:"置僧一百为实,以三一并得四为法除之,得大僧二十五个."所谓"实"便是"被除数","法"便是"除数".列式就是:

100÷(3+1)=25,100-25=75.